Linear stability of symplectic maps

A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1987-05, Vol.28 (5), p.1036-1051
Hauptverfasser: Howard, J. E., MacKay, R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general method is presented for analytically calculating linear stability limits for symplectic maps of arbitrary dimension in terms of the coefficients of the characteristic polynomial and the Krein signatures. Explicit results are given for dimensions 4, 6, and 8. The codimension and unfolding are calculated for all cases having a double eigenvalue on the unit circle. The results are applicable to many physical problems, including the restricted three‐body problem and orbital stability in particle accelerators.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.527544