Least squares with inequality restrictions: a symmetric positive-definite linear complementarity problem algorithm

When finding the least squares estimate in a full rank regression subject to inequality constraints, a symmetric positive-definite linear complementarity problem is encountered if the set of linear constraints is full rank. This particular problem is analyzed here, and an algorithm is proposed. A co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation 1987-08, Vol.28 (2), p.127-143
Hauptverfasser: Quintana†, José M., Federico, O'Reilly J., Gómez, Susana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When finding the least squares estimate in a full rank regression subject to inequality constraints, a symmetric positive-definite linear complementarity problem is encountered if the set of linear constraints is full rank. This particular problem is analyzed here, and an algorithm is proposed. A comparison is done between this algorithm and Lemke's algorithm. An Apple II microcomputer is used for the comparison.
ISSN:0094-9655
1563-5163
DOI:10.1080/00949658708811021