Least squares with inequality restrictions: a symmetric positive-definite linear complementarity problem algorithm
When finding the least squares estimate in a full rank regression subject to inequality constraints, a symmetric positive-definite linear complementarity problem is encountered if the set of linear constraints is full rank. This particular problem is analyzed here, and an algorithm is proposed. A co...
Gespeichert in:
Veröffentlicht in: | Journal of statistical computation and simulation 1987-08, Vol.28 (2), p.127-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When finding the least squares estimate in a full rank regression subject to inequality constraints, a symmetric positive-definite linear complementarity problem is encountered if the set of linear constraints is full rank.
This particular problem is analyzed here, and an algorithm is proposed. A comparison is done between this algorithm and Lemke's algorithm. An Apple II microcomputer is used for the comparison. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949658708811021 |