Adaptive carrier recovery systems for digital data communications receivers

Adaptive or predictive carrier recovery systems, which are essential in high-performance quadrature-amplitude-modulated (QAM) data communications systems to correct for phase jitter and frequency offset, are considered. Analytical and experimental results are presented for two structures that implem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 1989-12, Vol.7 (9), p.1328-1339
Hauptverfasser: Cupo, R.L., Gitlin, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adaptive or predictive carrier recovery systems, which are essential in high-performance quadrature-amplitude-modulated (QAM) data communications systems to correct for phase jitter and frequency offset, are considered. Analytical and experimental results are presented for two structures that implement a predictive carrier recovery system. These systems, which adapt their structure to match the spectral properties of the impairments, avoid the conflict between a wide bandwidth (to track fast jitter) and a narrow bandwidth (to minimize output noise) inherent in most carrier recovery loops. Such a system increases the likelihood that very bandwidth-efficient modems (e.g., 7 b/s/Hz for 19.2 kb/s voiceband modem applications) can provide reliable transmission in the presence of severe phase jitter and frequency offset. In particular, the predictive carrier recovery systems can track sinusoidal jitter present at more than one frequency as well as generalized time-varying phase jitter processes. Both finite-impulse-response (FIR) and infinite-impulse-response (IIR) adaptive phase tracking systems are considered. Prior limitations on adaptive IIR filters are overcome by designing a structure that is guaranteed to be stable and to possess only a global minimum as the filter coefficients converge to their desired values.< >
ISSN:0733-8716
1558-0008
DOI:10.1109/49.44576