Geometric continuity of parametric curves: constructions of geometrically continuous splines

Some observations are made concerning the source and nature of shape parameters. It is then described how Bezier curve segments can be stitched together with G/sup 1/ or G/sup 2/ continuity, using geometric constructions. These constructions lead to the development of geometric constructions for qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications 1990-01, Vol.10 (1), p.60-68
Hauptverfasser: Barsky, B.A., DeRose, T.D.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some observations are made concerning the source and nature of shape parameters. It is then described how Bezier curve segments can be stitched together with G/sup 1/ or G/sup 2/ continuity, using geometric constructions. These constructions lead to the development of geometric constructions for quadratic G/sup 1/ and cubic G/sup 2/ Beta-splines. A geometrically continuous subclass of Catmull-Rom splines based on geometric continuity and possessing shape parameters is discussed.< >
ISSN:0272-1716
1558-1756
DOI:10.1109/38.45811