Geometric continuity of parametric curves: constructions of geometrically continuous splines
Some observations are made concerning the source and nature of shape parameters. It is then described how Bezier curve segments can be stitched together with G/sup 1/ or G/sup 2/ continuity, using geometric constructions. These constructions lead to the development of geometric constructions for qua...
Gespeichert in:
Veröffentlicht in: | IEEE computer graphics and applications 1990-01, Vol.10 (1), p.60-68 |
---|---|
Hauptverfasser: | , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some observations are made concerning the source and nature of shape parameters. It is then described how Bezier curve segments can be stitched together with G/sup 1/ or G/sup 2/ continuity, using geometric constructions. These constructions lead to the development of geometric constructions for quadratic G/sup 1/ and cubic G/sup 2/ Beta-splines. A geometrically continuous subclass of Catmull-Rom splines based on geometric continuity and possessing shape parameters is discussed.< > |
---|---|
ISSN: | 0272-1716 1558-1756 |
DOI: | 10.1109/38.45811 |