Conversion of Pentoses to Ethanol by Yeasts and Fungi
Fermentation of D-xylose is of interest in enhancing the yield of ethanol obtainable from lignocellulosic hydrolysates. Such hydrolysates can contain both pentoses and hexoses, and while technology to convert hexoses to ethanol is well established, the fermentation of pentoses had been problematical...
Gespeichert in:
Veröffentlicht in: | Critical reviews in biotechnology 1989, Vol.9 (1), p.1-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fermentation of D-xylose is of interest in enhancing the yield of ethanol obtainable from lignocellulosic hydrolysates. Such hydrolysates can contain both pentoses and hexoses, and while technology to convert hexoses to ethanol is well established, the fermentation of pentoses had been problematical. To overcome the difficulty, yeasts and fungi have been sought and identified in recent years that can convert D-xylose into ethanol. However, operation of their cultures in the presence of the pentose to obtain rapid and efficient ethanol production is somewhat more complex than in the archetype alcoholic fermentation, Saccharomyces cerevisiae on D-glucose. The complexity stems, in part, from the association of ethanol accumulation in cultures where D-xylose is the sole carbon source with conditions that limit growth, by oxygen in particular, although limitation by other nutrients might also be implicated. Aspects of screening for appropriate organisms and of the parameters that play a role in determining culture variables, especially those associated with ethanol productivity, are reviewed. Performance with D-xylose as sole carbon source, in sugar mixtures, and in lignocellulosic hydrolysates is discussed. A model that involves biochemical considerations of D-xylose metabolism is presented that rationalizes the effects of oxygen on cultures where D-xylose is the sole carbon source, notably effects of the specific rate of oxygen use on the rate and extent of ethanol accumulation. Alternate methods to direct fermentation of D-xylose have been developed that depend on its prior isomerization to D-xylose, followed by fermentation of the pentulose by certain yeasts and fungi. Factors involved in the biochemistry, use, and performance of these methods, which with some organisms involves sensitivity to oxygen, are reviewed. |
---|---|
ISSN: | 0738-8551 1549-7801 |
DOI: | 10.3109/07388558909040614 |