Activity-Composition Relations in NiAl2O4─MnAl2O4 Solid Solutions and Stabilities of NiAl2O4 and MnAl2O4 at 1300° and 1400°C
Activities of NiO were measured in the oxide and spinel solutions of the system MnO–NiO–Al2O3 at 1300° and 1400° C with the aim of deriving information on the thermodynamic properties of the spinel phases. Synthetic samples in selected phase assemblages of the system were equilibrated with metallic...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1992-06, Vol.75 (6), p.1399-1406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activities of NiO were measured in the oxide and spinel solutions of the system MnO–NiO–Al2O3 at 1300° and 1400° C with the aim of deriving information on the thermodynamic properties of the spinel phases. Synthetic samples in selected phase assemblages of the system were equilibrated with metallic nickel and a gas phase of known oxygen partial pressures at a total pressure of 1 atm. The data on NiO activities and directions of conjugation lines between coexisting oxide and spinel phases were used to establish the activity–composition relations in spinel solid solutions at 1300° and 1400°C. The MnAl2O4–NiAl2O4 solid solutions exhibit considerable negative deviations from ideality at these temperatures. The free energy of formation of MnAl2O4 from its oxide components (MnO + Al2O3) at 1300° and 1400°C is calculated to be −24.97 and −26.56 kJ. mol−1, respectively. The activities determined in the stoichiometric spinel solid solutions are more negative as compared with those predicted from cation distribution models. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/j.1151-2916.1992.tb04200.x |