High‐Q plasmas in the TFTR tokamak

In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 2 6, 11 (1984)], the highest neutron source strength S n and D–D fusion power gain Q DD are realized in the neutral‐beam‐fueled and heated ‘‘supershot’’ regime that occurs after extensive wall conditioning to minimize recyclin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids. B, Plasma physics Plasma physics, 1991-08, Vol.3 (8), p.2308-2314
Hauptverfasser: Jassby, D. L., Barnes, C. W., Bell, M. G., Bitter, M., Boivin, R., Bretz, N. L., Budny, R. V., Bush, C. E., Dylla, H. F., Efthimion, P. C., Fredrickson, E. D., Hawryluk, R. J., Hill, K. W., Hosea, J., Hsuan, H., Janos, A. C., Jobes, F. C., Johnson, D. W., Johnson, L. C., Kamperschroer, J., Kieras‐Phillips, C., Kilpatrick, S. J., LaMarche, P. H., LeBlanc, B., Mansfield, D. K., Marmar, E. S., McCune, D. C., McGuire, K. M., Meade, D. M., Medley, S. S., Mikkelsen, D. R., Mueller, D., Owens, D. K., Park, H. K., Paul, S. F., Pitcher, S., Ramsey, A. T., Redi, M. H., Sabbagh, S. A., Scott, S. D., Snipes, J., Stevens, J., Strachan, J. D., Stratton, B. C., Synakowski, E. J., Taylor, G., Terry, J. L., Timberlake, J. R., Towner, H. H., Ulrickson, M., von Goeler, S., Wieland, R. M., Williams, M., Wilson, J. R., Wong, K.‐L., Young, K. M., Zarnstorff, M. C., Zweben, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 2 6, 11 (1984)], the highest neutron source strength S n and D–D fusion power gain Q DD are realized in the neutral‐beam‐fueled and heated ‘‘supershot’’ regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, S n increases approximately as P 1.8 b . The highest‐Q shots are characterized by high T e (up to 12 keV), T i (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad T e profiles, and lower Z eff. Replacement of critical areas of the graphite limiter tiles with carbon‐fiber composite tiles and improved alignment with the plasma have mitigated the ‘‘carbon bloom.’’ Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, Q DD increases with decreasing pre‐injection carbon radiation, and increases strongly with density peakedness [n e (0)/〈n e 〉] during the beam pulse. To date, the best fusion results are S n =5×1016 n/sec, Q DD=1.85×10−3, and neutron yield=4.0×1016 n/pulse, obtained at I p =1.6–1.9 MA and beam energy E b =95–103 keV, with nearly balanced co‐ and counter‐injected beam power. Computer simulations of supershot plasmas show that typically 50%–60% of S n arises from beam–target reactions, with the remainder divided between beam–beam and thermonuclear reactions, the thermonuclear fraction increasing with P b . The simulations predict that Q DT=0.3–0.4 would be obtained for the best present plasma conditions, if half the deuterium neutral beams were to be replaced by tritium beams. Somewhat higher values are calculated if D beams are injected into a predominantly tritium target plasma. The projected central beta of fusion alphas is 0.4%–0.6%, a level sufficient for the study of alpha‐induced collective effects.
ISSN:0899-8221
2163-503X
DOI:10.1063/1.859988