Theoretical aspects of gray-level morphology
After a brief discussion of the extension of mathematical morphology to complete lattices, the space of gray-level functions is considered and the concept of a threshold set is introduced. It is shown how one can use binary morphological operators and thresholding techniques to build a large class o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1991-06, Vol.13 (6), p.568-582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After a brief discussion of the extension of mathematical morphology to complete lattices, the space of gray-level functions is considered and the concept of a threshold set is introduced. It is shown how one can use binary morphological operators and thresholding techniques to build a large class of gray-level morphological operators. Particular attention is given to the class of so-called flat operators, i.e. operators which commute with thresholding. It is also shown how to define dilations and erosions with nonflat structuring elements if the gray-level set is finite. It is reported that mere truncation yields wrong results.< > |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/34.87343 |