Relative rate constants for reactions of HFC 152a, 143, 143a, 134a, and HCFC 124 with F or Cl atoms and for CF2CH3, CF2HCH2, and CF3CFH radicals with F2, Cl2, and O2
Relative rate experiments using UV photolysis of F2 or Cl2 have been used to determine rate constant ratios for several hydrofluorocarbon (HFC) reactions with Cl or F atoms and for HFC alkyl radicals with molecular halogens. For mixtures with F2 present, dark reactions are, also, observed which are...
Gespeichert in:
Veröffentlicht in: | International journal of chemical kinetics 1993-08, Vol.25 (8), p.667-680 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Relative rate experiments using UV photolysis of F2 or Cl2 have been used to determine rate constant ratios for several hydrofluorocarbon (HFC) reactions with Cl or F atoms and for HFC alkyl radicals with molecular halogens. For mixtures with F2 present, dark reactions are, also, observed which are attributed to thermal dissociation of the F2 to form F atoms. At 296 K, the rate of reaction (1a) [CF2HCH3 + F → CF2CH3 + HF] relative to (1b) [CF2HCH3 + F → CF2HCH2 + HF] is k1a/k1b = 0.73 (±0.13) and is independent of T (= 262–348 K). At 296 K, the ratio of reaction (2a) [CF2HCH2F + F → products] to that of (k1a + k1b) is (k1a + k1b)/k2a = 2.7 (±0.4), and for reaction (2b) [CF3CH3 + F → products] (k1a + k1b)/k2b = 22 ± 12. The temperature dependence (263–365 K) of the rate constant of reaction (3) [CF3CFH2 + Cl → products] relative to reaction (4) [CF3CFClH + Cl → products] is k3/k4(±10%) = 1.55 exp(−300 K/T). For the alkyl radicals formed from HFC 152a (CF2HCH2 and CF2CH3) and from HFC 134a (CF3CFH), rate constants for the reactions with F2 and Cl2 were measured relative to their reactions with O2. The rate constant of reaction (5cl) [CF2CH3 + Cl2 → CF2ClCH3 + Cl] relative to (5o) [CF2CH3 + O2 → CF2(O2)CH3] is k5cl/k5o(±15%) = 0.3 exp(200 K/T). For reaction (5f) [CF2CH3 + F2 → CF3CH3 + F], k5f/k5o(±35%) = 0.23. The ratio for reaction (6f) [CF2HCH2 + F2 → CF2HCH2F + F] relative to (6o) [CF2HCH2 + O2 → CF2HCH2O2] is k6f/k6o(±40%) = 1.23 exp(−730 K/T). The rate constant ratio for reaction (8cl) [CF3CFH + Cl2 → CF3CFClH + Cl] relative to reaction (8o) [CF3CFH + O2 → CF3CFHO2] is k8cl/k8o(±18%) = 0.16 exp(−940 K/T). For reaction (8f) [CF3CFH + F2 → CF3CF2H + F], k8f/k8o(±35%) = 0.6 exp(−860 K/T). © 1993 John Wiley & Sons, Inc. |
---|---|
ISSN: | 0538-8066 1097-4601 |
DOI: | 10.1002/kin.550250807 |