Transcription-Driven Site-Specific DNA Recombination in vitro

Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by γδ resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase track...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-04, Vol.90 (7), p.2759-2763
1. Verfasser: Droge, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2763
container_issue 7
container_start_page 2759
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Droge, Peter
description Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by γδ resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase tracking. In addition to functioning as a site-specific recombinase, γδ resolvase acts as a site-specific topoisomerase and increases the topological linking number of templates during transcription. The data suggest that the link between transcription and recombination could be negative DNA supercoiling that transiently builds up on a relatively short DNA segment in the wake of an advancing RNA polymerase. Surprisingly, transcription-driven recombination is not inhibited by the presence of large amounts of eukaryotic topoisomerase type I, indicating that site-specific recombination can override relaxation by diffusible topoisomerases. This in vitro system might therefore serve as a model for some transcription-directed recombination events observed in vivo.
doi_str_mv 10.1073/pnas.90.7.2759
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4737159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361617</jstor_id><sourcerecordid>2361617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5549-7075dde83e6588eaf17ae037e04968532e2fdbe280a8cb17eda3635f727dc7583</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoYzu6daXQiLirMs9KAroYZnzBoOCM65BO3dI01UmZVDX6703ZPcUogqu7ON-5r4PQY4JrgiV7OQSba41rWVMp9B20IliTquEa30UrjKmsFKf8PnqQ8xZjrIXCJ-hEMSUYpyv0-jrZkF3yw-hjqC6S30NYX_kRqqsBnO-8W198PFt_Bhd3Gx_sjK19WO_9mOJDdK-zfYZHx3qKvrx9c33-vrr89O7D-dll5YTgupJYirYFxaARSoHtiLSAmQTMdVMWoUC7dgNUYavchkhoLWuY6CSVrZNCsVP06tB3mDY7aB2EMdneDMnvbPppovXmTyX4b-Zr3BveECmK_cXRnuL3CfJodj476HsbIE7ZSNFwqrn6L0gaQWmDSQGf_QVu45RC-YGhmFCpuKYFqg-QSzHnBN2yMMFmDs_M4RmNjTRzeMXw9PaZC35Mq-jPj7rNzvZdic75vGBcMkl-t7m5Ym5_oy5jTDf1_Qg_xlvz_gkW_clB3-YxpgWgrCHlr-wXJczCvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201278492</pqid></control><display><type>article</type><title>Transcription-Driven Site-Specific DNA Recombination in vitro</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Droge, Peter</creator><creatorcontrib>Droge, Peter</creatorcontrib><description>Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by γδ resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase tracking. In addition to functioning as a site-specific recombinase, γδ resolvase acts as a site-specific topoisomerase and increases the topological linking number of templates during transcription. The data suggest that the link between transcription and recombination could be negative DNA supercoiling that transiently builds up on a relatively short DNA segment in the wake of an advancing RNA polymerase. Surprisingly, transcription-driven recombination is not inhibited by the presence of large amounts of eukaryotic topoisomerase type I, indicating that site-specific recombination can override relaxation by diffusible topoisomerases. This in vitro system might therefore serve as a model for some transcription-directed recombination events observed in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.7.2759</identifier><identifier>PMID: 8385342</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Bacteria ; Bacteriophage T7 - enzymology ; Bacteriophage T7 - genetics ; Biochemistry ; Biological and medical sciences ; Bromides ; Cattle ; Cytidine Monophosphate - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA Topoisomerases, Type I - metabolism ; DNA-Directed RNA Polymerases - genetics ; Electrophoresis ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gels ; Genic rearrangement. Recombination. Transposable element ; Kinetics ; Molecular and cellular biology ; Molecular genetics ; Nucleic acids ; Nucleotidyltransferases - metabolism ; Phosphorus Radioisotopes ; Plasmids ; Promoter Regions, Genetic ; Recombination, Genetic ; Restriction Mapping ; Ribonucleic acid ; RNA ; Templates, Genetic ; Thymus Gland - enzymology ; Topology ; Transcription, Genetic ; Transposases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (7), p.2759-2763</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 1, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5549-7075dde83e6588eaf17ae037e04968532e2fdbe280a8cb17eda3635f727dc7583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361617$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361617$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4737159$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8385342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Droge, Peter</creatorcontrib><title>Transcription-Driven Site-Specific DNA Recombination in vitro</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by γδ resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase tracking. In addition to functioning as a site-specific recombinase, γδ resolvase acts as a site-specific topoisomerase and increases the topological linking number of templates during transcription. The data suggest that the link between transcription and recombination could be negative DNA supercoiling that transiently builds up on a relatively short DNA segment in the wake of an advancing RNA polymerase. Surprisingly, transcription-driven recombination is not inhibited by the presence of large amounts of eukaryotic topoisomerase type I, indicating that site-specific recombination can override relaxation by diffusible topoisomerases. This in vitro system might therefore serve as a model for some transcription-directed recombination events observed in vivo.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteriophage T7 - enzymology</subject><subject>Bacteriophage T7 - genetics</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Bromides</subject><subject>Cattle</subject><subject>Cytidine Monophosphate - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Topoisomerases, Type I - metabolism</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Electrophoresis</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Kinetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Nucleic acids</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Phosphorus Radioisotopes</subject><subject>Plasmids</subject><subject>Promoter Regions, Genetic</subject><subject>Recombination, Genetic</subject><subject>Restriction Mapping</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Templates, Genetic</subject><subject>Thymus Gland - enzymology</subject><subject>Topology</subject><subject>Transcription, Genetic</subject><subject>Transposases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoYzu6daXQiLirMs9KAroYZnzBoOCM65BO3dI01UmZVDX6703ZPcUogqu7ON-5r4PQY4JrgiV7OQSba41rWVMp9B20IliTquEa30UrjKmsFKf8PnqQ8xZjrIXCJ-hEMSUYpyv0-jrZkF3yw-hjqC6S30NYX_kRqqsBnO-8W198PFt_Bhd3Gx_sjK19WO_9mOJDdK-zfYZHx3qKvrx9c33-vrr89O7D-dll5YTgupJYirYFxaARSoHtiLSAmQTMdVMWoUC7dgNUYavchkhoLWuY6CSVrZNCsVP06tB3mDY7aB2EMdneDMnvbPppovXmTyX4b-Zr3BveECmK_cXRnuL3CfJodj476HsbIE7ZSNFwqrn6L0gaQWmDSQGf_QVu45RC-YGhmFCpuKYFqg-QSzHnBN2yMMFmDs_M4RmNjTRzeMXw9PaZC35Mq-jPj7rNzvZdic75vGBcMkl-t7m5Ym5_oy5jTDf1_Qg_xlvz_gkW_clB3-YxpgWgrCHlr-wXJczCvg</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Droge, Peter</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930401</creationdate><title>Transcription-Driven Site-Specific DNA Recombination in vitro</title><author>Droge, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5549-7075dde83e6588eaf17ae037e04968532e2fdbe280a8cb17eda3635f727dc7583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteriophage T7 - enzymology</topic><topic>Bacteriophage T7 - genetics</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Bromides</topic><topic>Cattle</topic><topic>Cytidine Monophosphate - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Topoisomerases, Type I - metabolism</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Electrophoresis</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Kinetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Nucleic acids</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Phosphorus Radioisotopes</topic><topic>Plasmids</topic><topic>Promoter Regions, Genetic</topic><topic>Recombination, Genetic</topic><topic>Restriction Mapping</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Templates, Genetic</topic><topic>Thymus Gland - enzymology</topic><topic>Topology</topic><topic>Transcription, Genetic</topic><topic>Transposases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Droge, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Droge, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription-Driven Site-Specific DNA Recombination in vitro</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-04-01</date><risdate>1993</risdate><volume>90</volume><issue>7</issue><spage>2759</spage><epage>2763</epage><pages>2759-2763</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Transcription of a topologically relaxed, circular DNA triggers recombination between two directly repeated res sites by γδ resolvase in vitro. This activation of recombination depends on the res site-to-site distance and the orientation of sites with respect to the direction of RNA polymerase tracking. In addition to functioning as a site-specific recombinase, γδ resolvase acts as a site-specific topoisomerase and increases the topological linking number of templates during transcription. The data suggest that the link between transcription and recombination could be negative DNA supercoiling that transiently builds up on a relatively short DNA segment in the wake of an advancing RNA polymerase. Surprisingly, transcription-driven recombination is not inhibited by the presence of large amounts of eukaryotic topoisomerase type I, indicating that site-specific recombination can override relaxation by diffusible topoisomerases. This in vitro system might therefore serve as a model for some transcription-directed recombination events observed in vivo.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8385342</pmid><doi>10.1073/pnas.90.7.2759</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (7), p.2759-2763
issn 0027-8424
1091-6490
language eng
recordid cdi_pascalfrancis_primary_4737159
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Bacteriophage T7 - enzymology
Bacteriophage T7 - genetics
Biochemistry
Biological and medical sciences
Bromides
Cattle
Cytidine Monophosphate - metabolism
Deoxyribonucleic acid
DNA
DNA - genetics
DNA Topoisomerases, Type I - metabolism
DNA-Directed RNA Polymerases - genetics
Electrophoresis
Enzymes
Fundamental and applied biological sciences. Psychology
Gels
Genic rearrangement. Recombination. Transposable element
Kinetics
Molecular and cellular biology
Molecular genetics
Nucleic acids
Nucleotidyltransferases - metabolism
Phosphorus Radioisotopes
Plasmids
Promoter Regions, Genetic
Recombination, Genetic
Restriction Mapping
Ribonucleic acid
RNA
Templates, Genetic
Thymus Gland - enzymology
Topology
Transcription, Genetic
Transposases
title Transcription-Driven Site-Specific DNA Recombination in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription-Driven%20Site-Specific%20DNA%20Recombination%20in%20vitro&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Droge,%20Peter&rft.date=1993-04-01&rft.volume=90&rft.issue=7&rft.spage=2759&rft.epage=2763&rft.pages=2759-2763&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.7.2759&rft_dat=%3Cjstor_pasca%3E2361617%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201278492&rft_id=info:pmid/8385342&rft_jstor_id=2361617&rfr_iscdi=true