Sequence and localization of human NASP: Conservation of a Xenopus histone-binding protein
In this study the sequence and localization of human testicular NASP (nuclear autoantigenic sperm protein) are reported. NASP cDNA contains 2561 nt encoding a protein of 787 amino acids. The open reading frame contains 2446 nt followed by an ochre stop codon (TAA) and 104 nucleotides of untranslated...
Gespeichert in:
Veröffentlicht in: | Developmental biology 1992-11, Vol.154 (1), p.37-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study the sequence and localization of human testicular NASP (nuclear autoantigenic sperm protein) are reported. NASP cDNA contains 2561 nt encoding a protein of 787 amino acids. The open reading frame contains 2446 nt followed by an ochre stop codon (TAA) and 104 nucleotides of untranslated sequence containing a poly(A) addition signal 10 bases upstream of the poly(A) tail. Northern blot analysis of human testis poly(A) mRNA indicates a message of approximately 3.2 kb. Multiple sequence alignment (MSA) analysis of the encoded human NASP amino acid sequence with the sequence for the
Xenopus histone-binding protein N1/N2 and the rabbit NASP amino acid sequence demonstrates that the human sequence and the
Xenopus sequence have extensive amino acid homology upstream of the rabbit initiation codon. Significantly, there is an 85% identity between the human and the rabbit NASP sequences when the alignment starts at the N-terminal of the rabbit sequence and at amino acid 101 of the human sequence. The nuclear translocation signal found in N1/N2 and rabbit NASP is completely conserved in human NASP. The first histone-binding domain of
Xenopus is 70% identical and 90% similar to the human NASP domain. The second histone-binding domain of
Xenopus is 48% identical and 71% similar to the human NASP domain. MSA analysis of the three sequences generated an unrooted ancestral tree with two branches, indicating that fewer amino acid changes have occurred between the
Xenopus and the human sequences than between the
Xenopus and the rabbit sequences. In the human testis, NASP is localized predominantly in primary spermatocytes and round spermatids. Spermatogonia, Sertoli cells, Leydig cells, peritubular cells, and other somatic cells do not stain. Human spermatozoa contain NASP in the acrosomal region. Following the acrosome reaction, some NASP remains in the equatorial and postacrosomal regions. We propose that mammalian testes and sperm contain a histone-binding protein which may play a role in regulating the early events of spermatogenesis. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1016/0012-1606(92)90045-I |