Autoignition Chemistry of C₄ Olefins under Motored Engine Conditions: A Comparison of Experimental and Modeling Results
A detailed chemical kinetic mechanism was used to simulate the oxidation of 1-butene, 2-butene, and isobutene under motored engine conditions. Predicted species concentrations were compared to measured species concentrations obtained from a motored, single-cylinder engine. The chemical kinetic model...
Gespeichert in:
Veröffentlicht in: | SAE transactions 1991-01, Vol.100 (4), p.623-644 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed chemical kinetic mechanism was used to simulate the oxidation of 1-butene, 2-butene, and isobutene under motored engine conditions. Predicted species concentrations were compared to measured species concentrations obtained from a motored, single-cylinder engine. The chemical kinetic model reproduced correctly the trends in the measured species concentrations. The computational and experimental results showed the main features of olefin chemistry: radical addition to the double bond leads to the production of the observed carbonyls and epoxides. For isobutene oxidation, the production of unreactive, 2-methyl allyl radicals leads to higher molecular-weight species and chain termination. |
---|---|
ISSN: | 0096-736X 2577-1531 |