Calculating fπ in the consistent ladder approximation
We recalculate the pion decay constant ƒ π and the vacuum expectation value 〈 ψψ〉 in a new ladder approximation scheme to the Schwinger-Dyson and Bethe-Salpeter equations which is consistent both with the axial Ward-Takahashi identity and Z 2 = 1 condition (or the vector Ward identity in the abelian...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 1992-07, Vol.286 (3), p.355-364 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We recalculate the pion decay constant
ƒ
π
and the vacuum expectation value
〈
ψψ〉
in a new ladder approximation scheme to the Schwinger-Dyson and Bethe-Salpeter equations which is consistent both with the axial Ward-Takahashi identity and
Z
2 = 1 condition (or the vector Ward identity in the abelian case). We find that our previous numerical results remain qualitatively unchanged: in particular, the Pagels-Stokar formula is a good approximation to
ƒ
π
which agrees with the ladder-exact value to within 5%–30%. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/0370-2693(92)91787-A |