Calculating fπ in the consistent ladder approximation

We recalculate the pion decay constant ƒ π and the vacuum expectation value 〈 ψψ〉 in a new ladder approximation scheme to the Schwinger-Dyson and Bethe-Salpeter equations which is consistent both with the axial Ward-Takahashi identity and Z 2 = 1 condition (or the vector Ward identity in the abelian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 1992-07, Vol.286 (3), p.355-364
Hauptverfasser: Kugo, Taichiro, Mitchard, Mark G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recalculate the pion decay constant ƒ π and the vacuum expectation value 〈 ψψ〉 in a new ladder approximation scheme to the Schwinger-Dyson and Bethe-Salpeter equations which is consistent both with the axial Ward-Takahashi identity and Z 2 = 1 condition (or the vector Ward identity in the abelian case). We find that our previous numerical results remain qualitatively unchanged: in particular, the Pagels-Stokar formula is a good approximation to ƒ π which agrees with the ladder-exact value to within 5%–30%.
ISSN:0370-2693
1873-2445
DOI:10.1016/0370-2693(92)91787-A