Robust Likelihood Calculation for Time Series

We propose a computationally efficient method for calculating the likelihoods of a time series under many submodels, each of which assumes a patch of outliers or level shifts. We assume a state space representation of the time series model with a Bayesian-type treatment of anomalies. The calculation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1993, Vol.55 (4), p.829-836
1. Verfasser: Taplin, Ross H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a computationally efficient method for calculating the likelihoods of a time series under many submodels, each of which assumes a patch of outliers or level shifts. We assume a state space representation of the time series model with a Bayesian-type treatment of anomalies. The calculations form the basis for an efficient and robust estimation procedure. The method is also applicable to linear regression with correlated errors and is illustrated with two examples.
ISSN:0035-9246
1369-7412
2517-6161
1467-9868
DOI:10.1111/j.2517-6161.1993.tb01943.x