Prolongation structure of the Landau–Lifshitz equation
The prolongation method of Wahlquist and Estabrook is applied to the Landau–Lifshitz equation. The resulting prolongation algebra is shown to be isomorphic to a subalgebra of the tensor product of the Lie algebra so(3) with the elliptic curve v α 2−v β 2=j β−j α (α,β=1,2,3), which is essentially a s...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1993-06, Vol.34 (6), p.2394-2399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prolongation method of Wahlquist and Estabrook is applied to the Landau–Lifshitz equation. The resulting prolongation algebra is shown to be isomorphic to a subalgebra of the tensor product of the Lie algebra so(3) with the elliptic curve v
α
2−v
β
2=j
β−j
α (α,β=1,2,3), which is essentially a subalgebra of the Lie algebra applied by Date et
al. in a different context. Taking a matrix representation of so(3) gives rise to a Lax pair of the Landau–Lifshitz equation in agreement with the results found by Sklyanin. A system of related equations is deduced which can be used for the computation of auto‐Bäcklund transformations of the Landau–Lifshitz equation. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.530124 |