Oscillation Damping of a Distributed Generator Using a Virtual Synchronous Generator
These days, distributed generators (DGs), such as photovoltaic, wind turbine, and gas cogeneration systems have attracted more attention than in the past. DGs are often connected to a grid by power inverters. The inverters used in DGs are generally controlled by a phase-locked loop (PLL) in order to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2014-04, Vol.29 (2), p.668-676 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | These days, distributed generators (DGs), such as photovoltaic, wind turbine, and gas cogeneration systems have attracted more attention than in the past. DGs are often connected to a grid by power inverters. The inverters used in DGs are generally controlled by a phase-locked loop (PLL) in order to be synchronized with the grid. In a stability point of view, the power system will be significantly affected if the capacity of inverter-based DGs becomes larger and larger. The concept of the virtual synchronous generator (VSG), which is used to control inverters to behave like a real synchronous generator, can be considered as a solution. The VSG can produce virtual inertia from energy storage during a short operation time, and the active power can be produced by a VSG similar to a synchronous generator. In this paper, an oscillation damping approach is developed for a DG using the VSG. The method is confirmed analytically, and verified through computer simulations. Finally, some laboratory experiments are conducted using 10-kW inverters and a transmission-line simulator. |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2013.2281359 |