Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation

Using density functional theory (DFT), we report the modulated electronic and magnetic properties of MoS2 nanoribbon by passivating the ribbon edges with H and C separately. For the modeled symmetric MoS2 nanoribbon with a zig-zag type edge, one side is terminated at Mo and the other side is termina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-04, Vol.25 (16), p.165703-165703
Hauptverfasser: Sagynbaeva, Myskal, Panigrahi, Puspamitra, Yunguo, Li, Ramzan, Muhammad, Ahuja, Rajeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using density functional theory (DFT), we report the modulated electronic and magnetic properties of MoS2 nanoribbon by passivating the ribbon edges with H and C separately. For the modeled symmetric MoS2 nanoribbon with a zig-zag type edge, one side is terminated at Mo and the other side is terminated at S. For the zig-zag type, we have studied two ribbons of width 3 Å and 6 Å respectively. Both of these pristine zig-zag type nanoribbons are found to be metallic and also ferromagnetic. However, the increase in the ribbon width results in a decrease in the net magnetic moment of the nanoribbon. Thereafter, we study the modulated electronic and magnetic properties of the nanoribbon of 3 Å width by saturating the ribbon edges with H and C. In one case, by passivating the zig-zag type ribbon with H at the S terminated edge, we find a net increase in magnetic moment of the ribbon when compared with the pristine one. Furthermore, when the ribbon is passivated with H at both of the edges, the net magnetic moment shows a decreasing trend. In another case, the zig-zag nanoribbon is passivated with C in a similar fashion to H and we find with one edge passivation the net magnetic moment of the ribbon decreases, whereas with both edges C passivated the ribbon magnetism increases significantly. However, the nanoribbon modeled with the armchair type of edge and terminated with Mo at both sides is found to be non-magnetic and semiconducting. Passivating the armchair type nanoribbon with H and C, we find the band gap shows an increasing trend when going from one side to both sides passivation. In all cases, the armchair type nanoribbons show non-magnetic behavior.
ISSN:0957-4484
1361-6528
1361-6528
DOI:10.1088/0957-4484/25/16/165703