Analysis of a Novel Switched-Flux Memory Motor Employing a Time-Divisional Magnetization Strategy
This paper presents a novel switched-flux memory motor (SFMM) by artfully incorporating the flux-mnemonic concept into the conventional switched-flux permanent magnet machine. The magnetic susceptibility of AlNiCo PM provides the flexible online controllability of air-gap flux by imposing a transien...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2014-02, Vol.50 (2), p.849-852 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel switched-flux memory motor (SFMM) by artfully incorporating the flux-mnemonic concept into the conventional switched-flux permanent magnet machine. The magnetic susceptibility of AlNiCo PM provides the flexible online controllability of air-gap flux by imposing a transient current pulse. To uniformize magnetization levels of PMs, a time-divisional magnetization strategy (TDMS) is proposed. Due to the uniqueness of hysteresis nonlinearity and instability regarding AlNiCo PM operating point, the time-stepping finite element method (TSFEM) dynamically coupled with a nonlinearity-involved parallelogram hysteresis model (NIPHM) of AlNiCo PM is performed to investigate the electromagnetic performance of the proposed SFMM. The results derived from the combinative algorithm verifies the flux-adjustable capability of the proposed motor equipped with TDMS and the validity of the proposed NIPHM. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2013.2278849 |