Recursive local orthogonality filtering

Recursive local orthogonality (RLO) is a stochastic Newton algorithm to achieve a condition we term local orthogonality, which only requires unimodal symmetric densities with continuous nonzero second derivatives near the origin. For Gaussian systems, RLO reduces to recursive least squares. Local or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1997-09, Vol.45 (9), p.2293-2300
Hauptverfasser: Bodenschatz, J.S., Nikias, C.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recursive local orthogonality (RLO) is a stochastic Newton algorithm to achieve a condition we term local orthogonality, which only requires unimodal symmetric densities with continuous nonzero second derivatives near the origin. For Gaussian systems, RLO reduces to recursive least squares. Local orthogonality is both a subset of median orthogonality and a form of constrained maximum-likelihood optimization. Fast multichannel time and multichannel frequency domain implementations are given. Simulations show the utility for system identification and inverse modeling.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.622951