A W -Band On-Wafer Active Load-Pull System Based on Down-Conversion Techniques
A new W-band active load-pull system is presented. It is the first load-pull system to implement a 94 GHz load by means of an active loop exploiting frequency conversion techniques. The active loop configuration demonstrates a number of advantages that overcome the typical limitations of W-band pass...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2014-01, Vol.62 (1), p.148-153 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new W-band active load-pull system is presented. It is the first load-pull system to implement a 94 GHz load by means of an active loop exploiting frequency conversion techniques. The active loop configuration demonstrates a number of advantages that overcome the typical limitations of W-band passive tuners or conventional active open-loop techniques in a cost-effective way: load reflection coefficients Γ L as high as 0.95 in magnitude can be achieved at 94 GHz, thus providing a nearly full coverage of the Smith chart. Possible applications of the setup include technology assessment, large-signal device model verification at sub-terahertz frequencies, and W-band monolithic microwave integrated circuit design and characterization. The availability of direct and accurate load-pull measurements at W-band should prove an asset in the development of sub-terahertz integrated circuits. First measurements performed on high-performance InP double heterojunction bipolar transistors and GaN high electron-mobility transistors are presented. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2013.2292042 |