The Diophantine Equation x4 + 1 = Dy2

An effective method is derived for solving the equation of the title in positive integers x and y for given D completely, and is carried out for all $D < 100000$. If D is of the form m4 + 1, then there is the solution x = m, y = 1; in the above range, except for D = 70258 with solution x = 261, y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 1997-07, Vol.66 (219), p.1347-1351
1. Verfasser: Cohn, J. H. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effective method is derived for solving the equation of the title in positive integers x and y for given D completely, and is carried out for all $D < 100000$. If D is of the form m4 + 1, then there is the solution x = m, y = 1; in the above range, except for D = 70258 with solution x = 261, y = 257, there are no other solutions.
ISSN:0025-5718
1088-6842