The Diophantine Equation x4 + 1 = Dy2
An effective method is derived for solving the equation of the title in positive integers x and y for given D completely, and is carried out for all $D < 100000$. If D is of the form m4 + 1, then there is the solution x = m, y = 1; in the above range, except for D = 70258 with solution x = 261, y...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 1997-07, Vol.66 (219), p.1347-1351 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An effective method is derived for solving the equation of the title in positive integers x and y for given D completely, and is carried out for all $D < 100000$. If D is of the form m4 + 1, then there is the solution x = m, y = 1; in the above range, except for D = 70258 with solution x = 261, y = 257, there are no other solutions. |
---|---|
ISSN: | 0025-5718 1088-6842 |