Tunable in-plane uniaxial anisotropy and the magnetization reversal mechanism of patterned high-frequency soft magnetic FeTa strips

FeTa films with thickness of 110 nm are fabricated on glass substrates by magnetron sputtering, and then a series of strips is designed on the FeTa films by conventional optical lithography and the ion beam etching method. Patterned FeTa strips show a tunable in-plane uniaxial magnetic anisotropy pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2013-12, Vol.46 (48), p.485004-10
Hauptverfasser: Han, X M, Ma, J H, Wang, Z, Yao, Y L, Zuo, Y L, Xi, L, Xue, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FeTa films with thickness of 110 nm are fabricated on glass substrates by magnetron sputtering, and then a series of strips is designed on the FeTa films by conventional optical lithography and the ion beam etching method. Patterned FeTa strips show a tunable in-plane uniaxial magnetic anisotropy property in contrast with the magnetic isotropic property of as-deposited FeTa thin films. The magnetization reversal mechanism of the patterned FeTa strips is investigated via the in-plane angular dependences of magnetization and coercivity. The angular dependence of coercivity (ADC) is explained well in terms of the two-phase model, giving good quantitative agreement with the experimentally measured M-shaped ADC curve. The domain structure and spatial resolution magneto-optical Kerr effect measurement indicate that the smaller the strip width, the stronger will be the anisotropy field. Regarding the dynamic magnetic properties, a transformation from Debye dispersion spectrum for strips with weak anisotropy to natural resonance spectrum for strips with strong anisotropy is finally obtained. The tunable in-plane anisotropy fields of the FeTa strips result in tunable high-frequency soft magnetic properties by altering the strip width, indicating that patterned FeTa strips have great potential in high-frequency soft magnetic application fields.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/46/48/485004