Learning Query-Specific Distance Functions for Large-Scale Web Image Search
Current Google image search adopt a hybrid search approach in which a text-based query (e.g., "Paris landmarks") is used to retrieve a set of relevant images, which are then refined by the user (e.g., by re-ranking the retrieved images based on similarity to a selected example). We conject...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2013-12, Vol.15 (8), p.2022-2034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current Google image search adopt a hybrid search approach in which a text-based query (e.g., "Paris landmarks") is used to retrieve a set of relevant images, which are then refined by the user (e.g., by re-ranking the retrieved images based on similarity to a selected example). We conjecture that given such hybrid image search engines, learning per-query distance functions over image features can improve the estimation of image similarity. We propose scalable solutions to learning query-specific distance functions by 1) adopting a simple large-margin learning framework, 2) using the query-logs of text-based image search engine to train distance functions used in content-based systems. We evaluate the feasibility and efficacy of our proposed system through comprehensive human evaluation, and compare the results with the state-of-the-art image distance function used by Google image search. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2013.2279663 |