Highly Nonrigid Object Tracking via Patch-Based Dynamic Appearance Modeling

A novel tracking algorithm is proposed for targets with drastically changing geometric appearances over time. To track such objects, we develop a local patch-based appearance model and provide an efficient online updating scheme that adaptively changes the topology between patches. In the online upd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-10, Vol.35 (10), p.2427-2441
Hauptverfasser: Kwon, Junseok, Lee, Kyoung Mu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel tracking algorithm is proposed for targets with drastically changing geometric appearances over time. To track such objects, we develop a local patch-based appearance model and provide an efficient online updating scheme that adaptively changes the topology between patches. In the online update process, the robustness of each patch is determined by analyzing the likelihood landscape of the patch. Based on this robustness measure, the proposed method selects the best feature for each patch and modifies the patch by moving, deleting, or newly adding it over time. Moreover, a rough object segmentation result is integrated into the proposed appearance model to further enhance it. The proposed framework easily obtains segmentation results because the local patches in the model serve as good seeds for the semi-supervised segmentation task. To solve the complexity problem attributable to the large number of patches, the Basin Hopping (BH) sampling method is introduced into the tracking framework. The BH sampling method significantly reduces computational complexity with the help of a deterministic local optimizer. Thus, the proposed appearance model could utilize a sufficient number of patches. The experimental results show that the present approach could track objects with drastically changing geometric appearance accurately and robustly.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2013.32