On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization

A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2013-10, Vol.17 (5), p.605-620
Hauptverfasser: Lam, Albert Y. S., Li, Victor O. K., Jin Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 5
container_start_page 605
container_title IEEE transactions on evolutionary computation
container_volume 17
creator Lam, Albert Y. S.
Li, Victor O. K.
Jin Xu
description A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-world problems. However, all studies concerning CRO have been empirical in nature and no theoretical analysis has been conducted to study its convergence properties. In this paper, we present some convergence results for several generic versions of CRO, each of which adopts different combinations of elementary reactions. We investigate the limiting behavior of CRO. By modeling CRO as a finite absorbing Markov chain, we show that CRO converges to a global optimum solution with a probability arbitrarily close to one when time tends to infinity. Our results also show that the convergence of CRO is determined by both the elementary reactions and the total energy of the system. Moreover, we also study and discuss the finite time behavior of CRO.
doi_str_mv 10.1109/TEVC.2012.2227973
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27799289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6355648</ieee_id><sourcerecordid>27799289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-559498318a6022e3744d9b703a1f5de1976d6b4fc46377a8f3e7f80d36f7aeea3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gHjJxWPqfn8cJdQqFApaxVvYbGbtSpOU3SDorzc1pXiaGeZ9BuZB6JrgGSHY3K3nb8WMYkJnlFJlFDtBE2I4yTGm8nTosTa5Uvr9HF2k9Ikx4YKYCXpZtVm_gazo2i-IH9A6yDqfFRtogrPb7Bms60PXZqtdH5rwY_8G38WBaKrQ2r6LYcj9X1-iM2-3Ca4OdYpeH-br4jFfrhZPxf0yd9SIPhfCcKMZ0VZiSoEpzmtTKcws8aIGYpSsZcW945IpZbVnoLzGNZNeWQDLpoiMd13sUorgy10MjY3fJcHl3kq5t1LurZQHKwNzOzI7m4b_fLStC-kIUqWModoMuZsxFwDguJZMCMk1-wWDdGvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Lam, Albert Y. S. ; Li, Victor O. K. ; Jin Xu</creator><creatorcontrib>Lam, Albert Y. S. ; Li, Victor O. K. ; Jin Xu</creatorcontrib><description>A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-world problems. However, all studies concerning CRO have been empirical in nature and no theoretical analysis has been conducted to study its convergence properties. In this paper, we present some convergence results for several generic versions of CRO, each of which adopts different combinations of elementary reactions. We investigate the limiting behavior of CRO. By modeling CRO as a finite absorbing Markov chain, we show that CRO converges to a global optimum solution with a probability arbitrarily close to one when time tends to infinity. Our results also show that the convergence of CRO is determined by both the elementary reactions and the total energy of the system. Moreover, we also study and discuss the finite time behavior of CRO.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2012.2227973</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Chemical reaction optimization (CRO) ; Chemicals ; Computer science; control theory; systems ; Convergence ; convergence rate ; Cost function ; Exact sciences and technology ; finite absorbing Markov chain ; first hitting time ; Flows in networks. Combinatorial problems ; Learning and adaptive systems ; Markov processes ; Operational research and scientific management ; Operational research. Management science ; Sociology ; Statistics ; Theoretical computing</subject><ispartof>IEEE transactions on evolutionary computation, 2013-10, Vol.17 (5), p.605-620</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-559498318a6022e3744d9b703a1f5de1976d6b4fc46377a8f3e7f80d36f7aeea3</citedby><cites>FETCH-LOGICAL-c295t-559498318a6022e3744d9b703a1f5de1976d6b4fc46377a8f3e7f80d36f7aeea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6355648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6355648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27799289$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Albert Y. S.</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Jin Xu</creatorcontrib><title>On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-world problems. However, all studies concerning CRO have been empirical in nature and no theoretical analysis has been conducted to study its convergence properties. In this paper, we present some convergence results for several generic versions of CRO, each of which adopts different combinations of elementary reactions. We investigate the limiting behavior of CRO. By modeling CRO as a finite absorbing Markov chain, we show that CRO converges to a global optimum solution with a probability arbitrarily close to one when time tends to infinity. Our results also show that the convergence of CRO is determined by both the elementary reactions and the total energy of the system. Moreover, we also study and discuss the finite time behavior of CRO.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Chemical reaction optimization (CRO)</subject><subject>Chemicals</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>convergence rate</subject><subject>Cost function</subject><subject>Exact sciences and technology</subject><subject>finite absorbing Markov chain</subject><subject>first hitting time</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Learning and adaptive systems</subject><subject>Markov processes</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Theoretical computing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gHjJxWPqfn8cJdQqFApaxVvYbGbtSpOU3SDorzc1pXiaGeZ9BuZB6JrgGSHY3K3nb8WMYkJnlFJlFDtBE2I4yTGm8nTosTa5Uvr9HF2k9Ikx4YKYCXpZtVm_gazo2i-IH9A6yDqfFRtogrPb7Bms60PXZqtdH5rwY_8G38WBaKrQ2r6LYcj9X1-iM2-3Ca4OdYpeH-br4jFfrhZPxf0yd9SIPhfCcKMZ0VZiSoEpzmtTKcws8aIGYpSsZcW945IpZbVnoLzGNZNeWQDLpoiMd13sUorgy10MjY3fJcHl3kq5t1LurZQHKwNzOzI7m4b_fLStC-kIUqWModoMuZsxFwDguJZMCMk1-wWDdGvg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lam, Albert Y. S.</creator><creator>Li, Victor O. K.</creator><creator>Jin Xu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131001</creationdate><title>On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization</title><author>Lam, Albert Y. S. ; Li, Victor O. K. ; Jin Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-559498318a6022e3744d9b703a1f5de1976d6b4fc46377a8f3e7f80d36f7aeea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Chemical reaction optimization (CRO)</topic><topic>Chemicals</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>convergence rate</topic><topic>Cost function</topic><topic>Exact sciences and technology</topic><topic>finite absorbing Markov chain</topic><topic>first hitting time</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Learning and adaptive systems</topic><topic>Markov processes</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Albert Y. S.</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Jin Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lam, Albert Y. S.</au><au>Li, Victor O. K.</au><au>Jin Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>17</volume><issue>5</issue><spage>605</spage><epage>620</epage><pages>605-620</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-world problems. However, all studies concerning CRO have been empirical in nature and no theoretical analysis has been conducted to study its convergence properties. In this paper, we present some convergence results for several generic versions of CRO, each of which adopts different combinations of elementary reactions. We investigate the limiting behavior of CRO. By modeling CRO as a finite absorbing Markov chain, we show that CRO converges to a global optimum solution with a probability arbitrarily close to one when time tends to infinity. Our results also show that the convergence of CRO is determined by both the elementary reactions and the total energy of the system. Moreover, we also study and discuss the finite time behavior of CRO.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2012.2227973</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2013-10, Vol.17 (5), p.605-620
issn 1089-778X
1941-0026
language eng
recordid cdi_pascalfrancis_primary_27799289
source IEEE Electronic Library (IEL)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Chemical reaction optimization (CRO)
Chemicals
Computer science
control theory
systems
Convergence
convergence rate
Cost function
Exact sciences and technology
finite absorbing Markov chain
first hitting time
Flows in networks. Combinatorial problems
Learning and adaptive systems
Markov processes
Operational research and scientific management
Operational research. Management science
Sociology
Statistics
Theoretical computing
title On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Convergence%20of%20Chemical%20Reaction%20Optimization%20for%20Combinatorial%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Lam,%20Albert%20Y.%20S.&rft.date=2013-10-01&rft.volume=17&rft.issue=5&rft.spage=605&rft.epage=620&rft.pages=605-620&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2012.2227973&rft_dat=%3Cpascalfrancis_RIE%3E27799289%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6355648&rfr_iscdi=true