On the Convergence of Chemical Reaction Optimization for Combinatorial Optimization

A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2013-10, Vol.17 (5), p.605-620
Hauptverfasser: Lam, Albert Y. S., Li, Victor O. K., Jin Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel general-purpose optimization method, chemical reaction optimization (CRO), is a population-based metaheuristic inspired by the phenomenon of interactions between molecules in a chemical reaction process. CRO has demonstrated its competitive edge over existing methods in solving many real-world problems. However, all studies concerning CRO have been empirical in nature and no theoretical analysis has been conducted to study its convergence properties. In this paper, we present some convergence results for several generic versions of CRO, each of which adopts different combinations of elementary reactions. We investigate the limiting behavior of CRO. By modeling CRO as a finite absorbing Markov chain, we show that CRO converges to a global optimum solution with a probability arbitrarily close to one when time tends to infinity. Our results also show that the convergence of CRO is determined by both the elementary reactions and the total energy of the system. Moreover, we also study and discuss the finite time behavior of CRO.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2012.2227973