An experimental study of a radially arranged thin-film heat-flux gauge
A new thin-film heat-flux gauge was designed and fabricated on three different substrate materials. Forty pairs of Pt-Pt/10% Rh thermocouple junctions were deposited in a circular pattern on the same plane of the substrate. Over the thermocouples, 5 and 10 micron thick thermal resistance layers were...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 1997-07, Vol.8 (7), p.721-727 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new thin-film heat-flux gauge was designed and fabricated on three different substrate materials. Forty pairs of Pt-Pt/10% Rh thermocouple junctions were deposited in a circular pattern on the same plane of the substrate. Over the thermocouples, 5 and 10 micron thick thermal resistance layers were deposited to create a temperature gradient across those layers. Calibration and testing of these gauges were carried out in an arc-lamp calibration facility. The heat flux calculated from the gauge output is in good agreement with the value obtained from the pre-calibrated standard sensor. A CO2 laser was also used to test the steady-state and dynamic responses of the heat-flux gauge. During the steady-state test, the time constant for the heating period was 30 s. The frequency response of the heat-flux gauge was measured in the frequency domain using a CO2 laser and a chopper. The responses from an infrared detector and the heat-flux gauge were measured simultaneously and compared. It was found that the thin-film heat-flux gauge has a dynamic frequency response of 3 kHz. |
---|---|
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/0957-0233/8/7/005 |