Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic

In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2013-09, Vol.21 (9), p.1693-1704
Hauptverfasser: Absel, K., Manuel, L., Kavitha, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1704
container_issue 9
container_start_page 1693
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 21
creator Absel, K.
Manuel, L.
Kavitha, R. K.
description In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull-down transistors. The DDFF offers a power reduction of up to 37% and 30% compared to the conventional flip-flops at 25% and 50% data activities, respectively. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm UMC process show a power reduction of 27% compared to the Semidynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs. Also, DDFF and DDFF-ELM are compared with other state-of-the-art designs by implementing a 4-b synchronous counter and a 4-b Johnson up-down counter. The performance improvements indicate that the proposed designs are well suited for modern high-performance designs where power dissipation and latching overhead are of major concern.
doi_str_mv 10.1109/TVLSI.2012.2213280
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_27683534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6310072</ieee_id><sourcerecordid>27683534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-b5e8fbc1a3c3ad4749554dd579fb78159f9a02eec94cda9ba92cf1bdc0648b9e3</originalsourceid><addsrcrecordid>eNo9kE1PwkAURSdGExH9A7qZjcvifHY6SwNUSBolEdk280nGlLaZQkj_vUUIb_Necu95iwPAM0YTjJF8W2-K7-WEIEwmhGBKMnQDRphzkchhbocbpTTJCEb34KHrfhHCjEk0ApuiOSar5uginB1UBWd9rXbBwM_GOrg6VJ2zcNHrGCzMq9AmedW0MHdqf4ih3sK598EEV-_hfKedtUO7aLbBPII7rwb46bLH4Cefr6eLpPj6WE7fi8QQKfaJ5i7z2mBFDVWWCSY5Z9ZyIb0WGebSS4WIc0YyY5XUShLjsbYGpSzT0tExIOe_JjZdF50v2xh2KvYlRuXJTPlvpjyZKS9mBuj1DLWqM6ryUdUmdFeSiDSjnLKh93LuBefcNU4pRkgQ-gcwTG07</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic</title><source>IEEE Electronic Library (IEL)</source><creator>Absel, K. ; Manuel, L. ; Kavitha, R. K.</creator><creatorcontrib>Absel, K. ; Manuel, L. ; Kavitha, R. K.</creatorcontrib><description>In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull-down transistors. The DDFF offers a power reduction of up to 37% and 30% compared to the conventional flip-flops at 25% and 50% data activities, respectively. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm UMC process show a power reduction of 27% compared to the Semidynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs. Also, DDFF and DDFF-ELM are compared with other state-of-the-art designs by implementing a 4-b synchronous counter and a 4-b Johnson up-down counter. The performance improvements indicate that the proposed designs are well suited for modern high-performance designs where power dissipation and latching overhead are of major concern.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2012.2213280</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Circuit properties ; Delay ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Embedded logic ; Exact sciences and technology ; flip-flops ; high-speed ; Inverters ; leakage power ; low-power ; Power demand ; Power dissipation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Switches ; Transistors</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2013-09, Vol.21 (9), p.1693-1704</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-b5e8fbc1a3c3ad4749554dd579fb78159f9a02eec94cda9ba92cf1bdc0648b9e3</citedby><cites>FETCH-LOGICAL-c297t-b5e8fbc1a3c3ad4749554dd579fb78159f9a02eec94cda9ba92cf1bdc0648b9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6310072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6310072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27683534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Absel, K.</creatorcontrib><creatorcontrib>Manuel, L.</creatorcontrib><creatorcontrib>Kavitha, R. K.</creatorcontrib><title>Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull-down transistors. The DDFF offers a power reduction of up to 37% and 30% compared to the conventional flip-flops at 25% and 50% data activities, respectively. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm UMC process show a power reduction of 27% compared to the Semidynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs. Also, DDFF and DDFF-ELM are compared with other state-of-the-art designs by implementing a 4-b synchronous counter and a 4-b Johnson up-down counter. The performance improvements indicate that the proposed designs are well suited for modern high-performance designs where power dissipation and latching overhead are of major concern.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Circuit properties</subject><subject>Delay</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Embedded logic</subject><subject>Exact sciences and technology</subject><subject>flip-flops</subject><subject>high-speed</subject><subject>Inverters</subject><subject>leakage power</subject><subject>low-power</subject><subject>Power demand</subject><subject>Power dissipation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Switches</subject><subject>Transistors</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAURSdGExH9A7qZjcvifHY6SwNUSBolEdk280nGlLaZQkj_vUUIb_Necu95iwPAM0YTjJF8W2-K7-WEIEwmhGBKMnQDRphzkchhbocbpTTJCEb34KHrfhHCjEk0ApuiOSar5uginB1UBWd9rXbBwM_GOrg6VJ2zcNHrGCzMq9AmedW0MHdqf4ih3sK598EEV-_hfKedtUO7aLbBPII7rwb46bLH4Cefr6eLpPj6WE7fi8QQKfaJ5i7z2mBFDVWWCSY5Z9ZyIb0WGebSS4WIc0YyY5XUShLjsbYGpSzT0tExIOe_JjZdF50v2xh2KvYlRuXJTPlvpjyZKS9mBuj1DLWqM6ryUdUmdFeSiDSjnLKh93LuBefcNU4pRkgQ-gcwTG07</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Absel, K.</creator><creator>Manuel, L.</creator><creator>Kavitha, R. K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130901</creationdate><title>Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic</title><author>Absel, K. ; Manuel, L. ; Kavitha, R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-b5e8fbc1a3c3ad4749554dd579fb78159f9a02eec94cda9ba92cf1bdc0648b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Circuit properties</topic><topic>Delay</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Embedded logic</topic><topic>Exact sciences and technology</topic><topic>flip-flops</topic><topic>high-speed</topic><topic>Inverters</topic><topic>leakage power</topic><topic>low-power</topic><topic>Power demand</topic><topic>Power dissipation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Switches</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Absel, K.</creatorcontrib><creatorcontrib>Manuel, L.</creatorcontrib><creatorcontrib>Kavitha, R. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Absel, K.</au><au>Manuel, L.</au><au>Kavitha, R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>21</volume><issue>9</issue><spage>1693</spage><epage>1704</epage><pages>1693-1704</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull-down transistors. The DDFF offers a power reduction of up to 37% and 30% compared to the conventional flip-flops at 25% and 50% data activities, respectively. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm UMC process show a power reduction of 27% compared to the Semidynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs. Also, DDFF and DDFF-ELM are compared with other state-of-the-art designs by implementing a 4-b synchronous counter and a 4-b Johnson up-down counter. The performance improvements indicate that the proposed designs are well suited for modern high-performance designs where power dissipation and latching overhead are of major concern.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2012.2213280</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2013-09, Vol.21 (9), p.1693-1704
issn 1063-8210
1557-9999
language eng
recordid cdi_pascalfrancis_primary_27683534
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance
Circuit properties
Delay
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Embedded logic
Exact sciences and technology
flip-flops
high-speed
Inverters
leakage power
low-power
Power demand
Power dissipation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Switches
Transistors
title Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Power%20Dual%20Dynamic%20Node%20Pulsed%20Hybrid%20Flip-Flop%20Featuring%20Efficient%20Embedded%20Logic&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Absel,%20K.&rft.date=2013-09-01&rft.volume=21&rft.issue=9&rft.spage=1693&rft.epage=1704&rft.pages=1693-1704&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2012.2213280&rft_dat=%3Cpascalfrancis_RIE%3E27683534%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6310072&rfr_iscdi=true