Low-Power Dual Dynamic Node Pulsed Hybrid Flip-Flop Featuring Efficient Embedded Logic

In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2013-09, Vol.21 (9), p.1693-1704
Hauptverfasser: Absel, K., Manuel, L., Kavitha, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF) and a novel embedded logic module (DDFF-ELM) based on DDFF. The proposed designs eliminate the large capacitance present in the precharge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull-down transistors. The DDFF offers a power reduction of up to 37% and 30% compared to the conventional flip-flops at 25% and 50% data activities, respectively. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm UMC process show a power reduction of 27% compared to the Semidynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs. Also, DDFF and DDFF-ELM are compared with other state-of-the-art designs by implementing a 4-b synchronous counter and a 4-b Johnson up-down counter. The performance improvements indicate that the proposed designs are well suited for modern high-performance designs where power dissipation and latching overhead are of major concern.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2012.2213280