Computation of Radar Scattering From Heterogeneous Rough Soil Using the Finite-Element Method

A 2-D vector-element-based finite-element method (FEM) is used to calculate the radar backscatter from 1-D bare rough soil surfaces which can have an underlying heterogeneous substrate. Monte Carlo simulation results are presented for scattering at L-band (λ = 0.24 m). For homogeneous soils with rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2013-06, Vol.51 (6), p.3461-3469
Hauptverfasser: Khankhoje, U. K., van Zyl, J. J., Cwik, T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2-D vector-element-based finite-element method (FEM) is used to calculate the radar backscatter from 1-D bare rough soil surfaces which can have an underlying heterogeneous substrate. Monte Carlo simulation results are presented for scattering at L-band (λ = 0.24 m). For homogeneous soils with rough surfaces, the results of FEM are compared with the predictions of the small perturbation method. In the case of heterogeneous substrates, soil moisture (and, hence, soil permittivity) is assumed to vary as a function of depth. In this case, the results of FEM are compared with those of the transfer matrix method for flat soil surfaces. In both cases, a good agreement is found. For homogeneous rough soils, it is found that polarimetric radar backscatter and copolarized phase difference have a nonlinear relationship with soil moisture. Finally, it is found that the nature of the soil moisture variation in the top few centimeters of the soil has a strong influence on the backscatter and, hence, on the inferred soil moisture content.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2012.2225431