Schroedinger Eigenmaps for the Analysis of Biomedical Data

We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-05, Vol.35 (5), p.1274-1280
Hauptverfasser: Czaja, W., Ehler, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce Schroedinger Eigenmaps (SE), a new semi-supervised manifold learning and recovery technique. This method is based on an implementation of graph Schroedinger operators with appropriately constructed barrier potentials as carriers of labeled information. We use our approach for the analysis of standard biomedical datasets and new multispectral retinal images.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2012.270