Outlier-Robust PCA: The High-Dimensional Case
Principal component analysis plays a central role in statistics, engineering, and science. Because of the prevalence of corrupted data in real-world applications, much research has focused on developing robust algorithms. Perhaps surprisingly, these algorithms are unequipped-indeed, unable-to deal w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2013-01, Vol.59 (1), p.546-572 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Principal component analysis plays a central role in statistics, engineering, and science. Because of the prevalence of corrupted data in real-world applications, much research has focused on developing robust algorithms. Perhaps surprisingly, these algorithms are unequipped-indeed, unable-to deal with outliers in the high-dimensional setting where the number of observations is of the same magnitude as the number of variables of each observation, and the dataset contains some (arbitrarily) corrupted observations. We propose a high-dimensional robust principal component analysis algorithm that is efficient, robust to contaminated points, and easily kernelizable. In particular, our algorithm achieves maximal robustness-it has a breakdown point of 50% (the best possible), while all existing algorithms have a breakdown point of zero. Moreover, our algorithm recovers the optimal solution exactly in the case where the number of corrupted points grows sublinearly in the dimension. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2012.2212415 |