Surface structures and adhesion enhancement of poly(tetrafluoroethylene) films after modification by graft copolymerization with glycidyl methacrylate

Surface modifications of Ar plasma-pretreated poly(tetrafluoroethylene) (PTFE) film were carried out via near-UV light-induced graft copolymerization with glycidyl methacrylate (GMA). The structure and chemical composition of the copolymer surface and interface were studied by angle-resolved X-ray p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of adhesion science and technology 1997-01, Vol.11 (5), p.679-693
Hauptverfasser: Tie Wang, Kang, E.T., Neoh, K.G., Tan, K.L., Cui, C.Q., Lim, T.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface modifications of Ar plasma-pretreated poly(tetrafluoroethylene) (PTFE) film were carried out via near-UV light-induced graft copolymerization with glycidyl methacrylate (GMA). The structure and chemical composition of the copolymer surface and interface were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). For PTFE substrate with a substantial amount of grafting, the grafted GMA polymer penetrates or becomes partially submerged beneath a thin surface layer of dense substrate chains to form a stratified surface microstructure. The concentration of the surface-grafted GMA polymer increases with the plasma pretreatment time, the near-UV light illumination time, and the monomer concentration. The GMA graft copolymerized PTFE surfaces adhere strongly to one another when brought into direct contact and cured (i) in the presence of a diamine alone or (ii) in the presence of an epoxy adhesive (epoxy resin plus diamine curing agent). In the presence of diamine alone, failure occurs in the interfacial region. For epoxy adhesive-promoted adhesion, the failure mode is cohesive, i.e. it takes place in the bulk of one of the delaminated PTFE films. The lap shear strengths in both cases increase with the amount of surface-grafted epoxide polymer. The development of the adhesion strength depends on the concentration of the surface graft, the microstructure of the graft copolymerized PTFE surface, the interfacial reactions, and the nature of the bonding agent.
ISSN:0169-4243
1568-5616
DOI:10.1163/156856197X00660