NADP-malate dehydrogenase in the C4 plant Flaveria bidentis: cosense suppression of activity in mesophyll and bundle-sheath cells and consequences for photosynthesis

Flaveria bidentis, a C4 dicot, was transformed with sorghum (a monocot) cDNA clones encoding NADP-malate dehydrogenase (NADP-MDH; EC 1.1.1.82) driven by the cauliflower mosaic virus 35S promoter. Although these constructs were designed for overexpression, many transformants contained between 5 and 5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1997-04, Vol.113 (4), p.1153-1165
Hauptverfasser: Trevanion, S.J. (Australian National University, Canberra, ACT, Australia.), Furbank, R.T, Ashton, A.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flaveria bidentis, a C4 dicot, was transformed with sorghum (a monocot) cDNA clones encoding NADP-malate dehydrogenase (NADP-MDH; EC 1.1.1.82) driven by the cauliflower mosaic virus 35S promoter. Although these constructs were designed for overexpression, many transformants contained between 5 and 50% of normal NADP-MDH activity, presumably by cosense suppression of the native gene. The activities of a range of other photosynthetic enzymes were unaffected. Rates of photosynthesis in plants with less than about 10% of normal activity were reduced at high light and at high [CO2], but were unaffected at low light or at [CO2] below about 150 microliters L-1. The large decrease in maximum activity of NADP-MDH was accompanied by an increase in the activation state of the enzyme. However, the activation state was unaffected in plants with 50% of normal activity. Metabolic flux control analysis of plants with a range of activities demonstrates that this enzyme is not important in regulating the steady-state flux through C4 photosynthesis in F. bidentis. Cosense suppression of gene expression was similarly effective in both the mesophyll and bundle-sheath cells. Photosynthesis of plants with very low activity of NADP-MDH in the bundle-sheath cells was only slightly inhibited, suggesting that the presence of the enzyme in this compartment is not essential for supporting maximum rates of photosynthesis
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.113.4.1153