Relationship between minimum gap and success probability in adiabatic quantum computing
We explore the relationship between two figures of merit for an adiabatic quantum computation process: the success probability P and the minimum gap Δmin between the ground and first excited states, investigating to what extent the success probability for an ensemble of problem Hamiltonians can be f...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-12, Vol.45 (50), p.505305-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the relationship between two figures of merit for an adiabatic quantum computation process: the success probability P and the minimum gap Δmin between the ground and first excited states, investigating to what extent the success probability for an ensemble of problem Hamiltonians can be fitted by a function of Δmin and the computation time T. We study a generic adiabatic algorithm and show that a rich structure exists in the distribution of P and Δmin. In the case of two qubits, P is to a good approximation a function of Δmin, of the stage in the evolution at which the minimum occurs and of T. This structure persists in examples of larger systems. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/45/50/505305 |