Electrospun TiO2–Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries

We report the synthesis and electrochemical performance of one-dimensional TiO2–graphene composite nanofibers (TiO2–G nanofibers) by a simple electrospinning technique for the first time. Structural and morphological properties were characterized by various techniques, such as X-ray diffraction, sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-07, Vol.116 (28), p.14780-14788
Hauptverfasser: Zhang, Xiang, Suresh Kumar, Palaniswamy, Aravindan, Vanchiappan, Liu, Hui Hui, Sundaramurthy, Jayaraman, Mhaisalkar, Subodh G, Duong, Hai Minh, Ramakrishna, Seeram, Madhavi, Srinivasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the synthesis and electrochemical performance of one-dimensional TiO2–graphene composite nanofibers (TiO2–G nanofibers) by a simple electrospinning technique for the first time. Structural and morphological properties were characterized by various techniques, such as X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and BET surface area analysis. Lithium insertion properties were evaluated by both galvanostatic and potentiostatic modes in half-cell configurations. Cyclic voltammetric study reveals the Li-insertion/extraction by a two-phase reaction mechanism that is supported by galvanostatic charge–discharge profiles. Li/TiO2–G half-cells showed an initial discharge capacity of 260 mA h g–1 at current density of 33 mA g–1. Further, Li/TiO2–G cell retained 84% of reversible capacity after 300 cycles at a current density of 150 mA g–1, which is 25% higher than bare TiO2 nanofibers under the same test conditions. The cell also exhibits promising high rate behavior with a discharge capacity of 71 mA h g–1 at a current density of 1.8 A g–1.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp302574g