Synthesis of Long-Chain Chitooligosaccharides by a Hypertransglycosylating Processive Endochitinase of Serratia proteamaculans 568

We describe the heterologous expression and characterization of a 407-residue single-domain glycosyl hydrolase family 18 chitinase (SpChiD) from Gram-negative Serratia proteamaculans 568 that has unprecedented catalytic properties. SpChiD was optimally active at pH 6.0 and 40°C, where it showed a Km...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bacteriology 2012-08, Vol.194 (16), p.4260-4271
Hauptverfasser: Purushotham, Pallinti, Podile, Appa Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the heterologous expression and characterization of a 407-residue single-domain glycosyl hydrolase family 18 chitinase (SpChiD) from Gram-negative Serratia proteamaculans 568 that has unprecedented catalytic properties. SpChiD was optimally active at pH 6.0 and 40°C, where it showed a Km of 83 mg ml−1, a kcat of 3.9 × 102 h−1, and a kcat/Km of 4.7 h mg−1 ml−1 on colloidal chitin. On chitobiose, the Km, kcat, and kcat/Km were 203 μM, 1.3 × 102 h−1, and 0.62 h−1 μM−1, respectively. Hydrolytic activity on chitooligosaccharides (CHOS) and colloidal chitin indicated that SpChiD was an endo-acting processive enzyme, with the unique ability to convert released chitobiose to N-acetylglucosamine, the major end product. SpChiD showed hyper transglycosylation (TG) with trimer-hexamer CHOS substrates, generating considerable amounts of long-chain CHOS. The TG activity of SpChiD was dependent on both the length and concentration of the oligomeric substrate and also on the enzyme concentration. The length and amount of accumulated TG products increased with increases in the length of the substrate and its concentration and decreased with increases in the enzyme concentration. The SpChiD bound to insoluble and soluble chitin substrates despite the absence of accessory domains. Sequence alignments and structural modeling indicated that SpChiD would have a deep substrate-binding groove lined with aromatic residues, which is characteristic of processive enzymes. SpChiD shows a combination of properties that seems rare among family 18 chitinases and that may resemble the properties of human chitotriosidase.
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/JB.06473-11