Numerical simulation of aluminum alloy 6061 micro-mold fabrication for the production of polymeric microstructures by micro-hot-embossing
Micro-molds play an important role in the manufacturing process of polymeric micro-devices, e.g. microfluidic devices, as they determine the product quality and the overall production cost. We report here the applicability of a large-deformation, high-temperature, isotropic elastic-viscoplasticity m...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2012-08, Vol.22 (8), p.85005-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Micro-molds play an important role in the manufacturing process of polymeric micro-devices, e.g. microfluidic devices, as they determine the product quality and the overall production cost. We report here the applicability of a large-deformation, high-temperature, isotropic elastic-viscoplasticity model for the prediction of micron-scale hot-embossing of AA6061. The material parameters in the constitutive model were determined by fitting the stress-strain curves from compression tests at various temperatures and strain rates. The constitutive theory was implemented in a finite element program, and the numerical simulation capability was validated by predicting the response of AA6061 in some representative macro-scale experiments; these experiments had not been used for the determination of the material parameters in the constitutive model. Additional micron-scale hot-embossing experiments on AA6061 were conducted, and by comparing the numerical simulation results to the corresponding physical experiments, we demonstrate that the deformation evolution of AA6061 during micro-hot-embossing is well predicted. The constitutive model and its numerical implementation open the possibility of optimizing the process of making micro-molds for microfluidic devices from AA6061. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/22/8/085005 |