A Resonant Controller With High Structural Robustness for Fixed-Point Digital Implementations

This paper presents a new resonant (R) controller. The proposed R controller is input-output equivalent to the conventional R controller but it is internally nonlinear. Its internal state variables are the transformed versions of the conventional R controller into the polar coordinates. It is, thus,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2012-07, Vol.27 (7), p.3352-3362
Hauptverfasser: Khajehoddin, S. A., Karimi-Ghartemani, M., Jain, P. K., Bakhshai, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new resonant (R) controller. The proposed R controller is input-output equivalent to the conventional R controller but it is internally nonlinear. Its internal state variables are the transformed versions of the conventional R controller into the polar coordinates. It is, thus, given the name of polar form resonant (PFR) controller. While the PFR is totally equivalent to the R controller in continuous-time domain, it offers a much higher structural robustness when it comes to digital implementations. Particularly, it is shown in this paper that the PFR resolves the well-known structural sensitivity of the R controller for applications that need high sampling frequency and have word length limitations. Such a structural sensitivity is conventionally resolved by resorting to the delta-domain realizations. The PFR offers an alternative method to the delta-domain realization technique with even higher degree of robustness and easier stage of adjustment. Moreover, the PFR can easily be enhanced to accommodate frequency variations, a feature that is not easily attainable using the delta-domain method. Feasibility of the PFR controller is verified using a laboratory prototype of a single-phase uninterruptible power supply system operating at high sampling and switching frequencies where the control system is implemented on a field programmable gate array board.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2011.2181422