Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network
Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D fac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-05, Vol.21 (5), p.2887-2897 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2897 |
---|---|
container_issue | 5 |
container_start_page | 2887 |
container_title | IEEE transactions on image processing |
container_volume | 21 |
creator | Song, Mingli Tao, Dacheng Huang, Xiaoqin Chen, Chun Bu, Jiajun |
description | Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image. |
doi_str_mv | 10.1109/TIP.2012.2183882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25825855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6183055</ieee_id><sourcerecordid>1022900574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</originalsourceid><addsrcrecordid>eNqNkd9r2zAQx8VYWbtu74PBEJTBXpzdyZIjP7bp0gVKN7Ls2SjyqXNnW6lkU_rfV1myFvrUpzvuPveD75exDwgTRCi_rhY_JwJQTATqXGvxih1hKTEDkOJ1ykFNsynK8pC9jfEGAKXC4g07FEKhxByP2HL1JxBl501HfWx8b1o-N5b4kqzv4xBGO6QqnwffccN_Nf11S3zRmWvi6_tUmflx01LNl2dzfkXDnQ9_37EDZ9pI7_fxmP2ef1vNvmeXPy4Ws9PLzEqEIZPWKk01KonpoMmRylpPCwKri7UFWSM6WRo3XUtdSqXROikK5WowxlmX58fsy27vJvjbkeJQdU201LamJz_GCkGIEpIE8gUoJPWULCGhJ8_QGz-GpMs_Ssj0ithSsKNs8DEGctUmNJ0J9wmqttZUyZpqa021tyaNfNovHtcd1Y8D_71IwOc9YKI1rQumt0184lT6UCuVuI87riGix3aRzkDqPgDRA5x9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002494520</pqid></control><display><type>article</type><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</creator><creatorcontrib>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</creatorcontrib><description>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2183882</identifier><identifier>PMID: 22514131</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D face reconstruction ; Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Coupled RBF network ; Exact sciences and technology ; Face ; Face - anatomy & histology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information, signal and communications theory ; Mapping ; Networks ; Neurons ; Pattern recognition ; Pattern Recognition, Automated - methods ; Radial basis function networks ; Reconstruction ; Representations ; Reproducibility of Results ; Sensitivity and Specificity ; Shape ; Signal processing ; single image ; Solid modeling ; Studies ; Telecommunications and information theory ; Three dimensional ; Three dimensional models ; Training</subject><ispartof>IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2887-2897</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</citedby><cites>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6183055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6183055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25825855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22514131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Huang, Xiaoqin</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Bu, Jiajun</creatorcontrib><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</description><subject>3-D face reconstruction</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Coupled RBF network</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy & histology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information, signal and communications theory</subject><subject>Mapping</subject><subject>Networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radial basis function networks</subject><subject>Reconstruction</subject><subject>Representations</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Signal processing</subject><subject>single image</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd9r2zAQx8VYWbtu74PBEJTBXpzdyZIjP7bp0gVKN7Ls2SjyqXNnW6lkU_rfV1myFvrUpzvuPveD75exDwgTRCi_rhY_JwJQTATqXGvxih1hKTEDkOJ1ykFNsynK8pC9jfEGAKXC4g07FEKhxByP2HL1JxBl501HfWx8b1o-N5b4kqzv4xBGO6QqnwffccN_Nf11S3zRmWvi6_tUmflx01LNl2dzfkXDnQ9_37EDZ9pI7_fxmP2ef1vNvmeXPy4Ws9PLzEqEIZPWKk01KonpoMmRylpPCwKri7UFWSM6WRo3XUtdSqXROikK5WowxlmX58fsy27vJvjbkeJQdU201LamJz_GCkGIEpIE8gUoJPWULCGhJ8_QGz-GpMs_Ssj0ithSsKNs8DEGctUmNJ0J9wmqttZUyZpqa021tyaNfNovHtcd1Y8D_71IwOc9YKI1rQumt0184lT6UCuVuI87riGix3aRzkDqPgDRA5x9</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Song, Mingli</creator><creator>Tao, Dacheng</creator><creator>Huang, Xiaoqin</creator><creator>Chen, Chun</creator><creator>Bu, Jiajun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><author>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D face reconstruction</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Coupled RBF network</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy & histology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information, signal and communications theory</topic><topic>Mapping</topic><topic>Networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radial basis function networks</topic><topic>Reconstruction</topic><topic>Representations</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Signal processing</topic><topic>single image</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Huang, Xiaoqin</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Bu, Jiajun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Mingli</au><au>Tao, Dacheng</au><au>Huang, Xiaoqin</au><au>Chen, Chun</au><au>Bu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>21</volume><issue>5</issue><spage>2887</spage><epage>2897</epage><pages>2887-2897</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22514131</pmid><doi>10.1109/TIP.2012.2183882</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2887-2897 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_25825855 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D face reconstruction Algorithms Applied sciences Artificial Intelligence Biometry - methods Coupled RBF network Exact sciences and technology Face Face - anatomy & histology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image reconstruction Information, signal and communications theory Mapping Networks Neurons Pattern recognition Pattern Recognition, Automated - methods Radial basis function networks Reconstruction Representations Reproducibility of Results Sensitivity and Specificity Shape Signal processing single image Solid modeling Studies Telecommunications and information theory Three dimensional Three dimensional models Training |
title | Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Face%20Reconstruction%20From%20a%20Single%20Image%20by%20a%20Coupled%20RBF%20Network&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Song,%20Mingli&rft.date=2012-05-01&rft.volume=21&rft.issue=5&rft.spage=2887&rft.epage=2897&rft.pages=2887-2897&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2183882&rft_dat=%3Cproquest_RIE%3E1022900574%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1002494520&rft_id=info:pmid/22514131&rft_ieee_id=6183055&rfr_iscdi=true |