Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network

Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-05, Vol.21 (5), p.2887-2897
Hauptverfasser: Song, Mingli, Tao, Dacheng, Huang, Xiaoqin, Chen, Chun, Bu, Jiajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2897
container_issue 5
container_start_page 2887
container_title IEEE transactions on image processing
container_volume 21
creator Song, Mingli
Tao, Dacheng
Huang, Xiaoqin
Chen, Chun
Bu, Jiajun
description Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.
doi_str_mv 10.1109/TIP.2012.2183882
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_25825855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6183055</ieee_id><sourcerecordid>1022900574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</originalsourceid><addsrcrecordid>eNqNkd9r2zAQx8VYWbtu74PBEJTBXpzdyZIjP7bp0gVKN7Ls2SjyqXNnW6lkU_rfV1myFvrUpzvuPveD75exDwgTRCi_rhY_JwJQTATqXGvxih1hKTEDkOJ1ykFNsynK8pC9jfEGAKXC4g07FEKhxByP2HL1JxBl501HfWx8b1o-N5b4kqzv4xBGO6QqnwffccN_Nf11S3zRmWvi6_tUmflx01LNl2dzfkXDnQ9_37EDZ9pI7_fxmP2ef1vNvmeXPy4Ws9PLzEqEIZPWKk01KonpoMmRylpPCwKri7UFWSM6WRo3XUtdSqXROikK5WowxlmX58fsy27vJvjbkeJQdU201LamJz_GCkGIEpIE8gUoJPWULCGhJ8_QGz-GpMs_Ssj0ithSsKNs8DEGctUmNJ0J9wmqttZUyZpqa021tyaNfNovHtcd1Y8D_71IwOc9YKI1rQumt0184lT6UCuVuI87riGix3aRzkDqPgDRA5x9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002494520</pqid></control><display><type>article</type><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</creator><creatorcontrib>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</creatorcontrib><description>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2183882</identifier><identifier>PMID: 22514131</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D face reconstruction ; Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Coupled RBF network ; Exact sciences and technology ; Face ; Face - anatomy &amp; histology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information, signal and communications theory ; Mapping ; Networks ; Neurons ; Pattern recognition ; Pattern Recognition, Automated - methods ; Radial basis function networks ; Reconstruction ; Representations ; Reproducibility of Results ; Sensitivity and Specificity ; Shape ; Signal processing ; single image ; Solid modeling ; Studies ; Telecommunications and information theory ; Three dimensional ; Three dimensional models ; Training</subject><ispartof>IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2887-2897</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</citedby><cites>FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6183055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6183055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25825855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22514131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Huang, Xiaoqin</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Bu, Jiajun</creatorcontrib><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</description><subject>3-D face reconstruction</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Coupled RBF network</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy &amp; histology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information, signal and communications theory</subject><subject>Mapping</subject><subject>Networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radial basis function networks</subject><subject>Reconstruction</subject><subject>Representations</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Signal processing</subject><subject>single image</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd9r2zAQx8VYWbtu74PBEJTBXpzdyZIjP7bp0gVKN7Ls2SjyqXNnW6lkU_rfV1myFvrUpzvuPveD75exDwgTRCi_rhY_JwJQTATqXGvxih1hKTEDkOJ1ykFNsynK8pC9jfEGAKXC4g07FEKhxByP2HL1JxBl501HfWx8b1o-N5b4kqzv4xBGO6QqnwffccN_Nf11S3zRmWvi6_tUmflx01LNl2dzfkXDnQ9_37EDZ9pI7_fxmP2ef1vNvmeXPy4Ws9PLzEqEIZPWKk01KonpoMmRylpPCwKri7UFWSM6WRo3XUtdSqXROikK5WowxlmX58fsy27vJvjbkeJQdU201LamJz_GCkGIEpIE8gUoJPWULCGhJ8_QGz-GpMs_Ssj0ithSsKNs8DEGctUmNJ0J9wmqttZUyZpqa021tyaNfNovHtcd1Y8D_71IwOc9YKI1rQumt0184lT6UCuVuI87riGix3aRzkDqPgDRA5x9</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Song, Mingli</creator><creator>Tao, Dacheng</creator><creator>Huang, Xiaoqin</creator><creator>Chen, Chun</creator><creator>Bu, Jiajun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</title><author>Song, Mingli ; Tao, Dacheng ; Huang, Xiaoqin ; Chen, Chun ; Bu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4cc58ed1541acea31e9d876e0c86bc04d11f49af7b4894581cf4265fd0aafcf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D face reconstruction</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Coupled RBF network</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy &amp; histology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information, signal and communications theory</topic><topic>Mapping</topic><topic>Networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radial basis function networks</topic><topic>Reconstruction</topic><topic>Representations</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Signal processing</topic><topic>single image</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><creatorcontrib>Huang, Xiaoqin</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Bu, Jiajun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Mingli</au><au>Tao, Dacheng</au><au>Huang, Xiaoqin</au><au>Chen, Chun</au><au>Bu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>21</volume><issue>5</issue><spage>2887</spage><epage>2897</epage><pages>2887-2897</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22514131</pmid><doi>10.1109/TIP.2012.2183882</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2887-2897
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_25825855
source IEEE Electronic Library (IEL)
subjects 3-D face reconstruction
Algorithms
Applied sciences
Artificial Intelligence
Biometry - methods
Coupled RBF network
Exact sciences and technology
Face
Face - anatomy & histology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Information, signal and communications theory
Mapping
Networks
Neurons
Pattern recognition
Pattern Recognition, Automated - methods
Radial basis function networks
Reconstruction
Representations
Reproducibility of Results
Sensitivity and Specificity
Shape
Signal processing
single image
Solid modeling
Studies
Telecommunications and information theory
Three dimensional
Three dimensional models
Training
title Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Face%20Reconstruction%20From%20a%20Single%20Image%20by%20a%20Coupled%20RBF%20Network&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Song,%20Mingli&rft.date=2012-05-01&rft.volume=21&rft.issue=5&rft.spage=2887&rft.epage=2897&rft.pages=2887-2897&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2183882&rft_dat=%3Cproquest_RIE%3E1022900574%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1002494520&rft_id=info:pmid/22514131&rft_ieee_id=6183055&rfr_iscdi=true