Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network
Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D fac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-05, Vol.21 (5), p.2887-2897 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2012.2183882 |