Characterization of Encapsulants for High-Voltage High-Temperature Power Electronic Packaging
Seven encapsulants with operating temperature up to 250 °C are surveyed for possible use in high-temperature high-power planar packages. Processability is assessed by studying the flow fronts and the cured properties of the surveyed materials between paralleled plates. Material B failed in the flow...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2012-04, Vol.2 (4), p.539-547 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seven encapsulants with operating temperature up to 250 °C are surveyed for possible use in high-temperature high-power planar packages. Processability is assessed by studying the flow fronts and the cured properties of the surveyed materials between paralleled plates. Material B failed in the flow test because it dried out in seconds. Materials A, C, and D failed the curability test because A and C showed volume shrinkage during curing, while D cracked after curing owing to its brittle nature. It is found that elastic materials that usually correspond to low glass transition temperatures (T g ) tend to perform better with regard to large-area planar-structure packages. Materials E-G are confirmed to be comparatively stable with respect to temperature, and both dielectric strength and dielectric permittivity decrease by about 40 and 30%, respectively, as the temperature is increased from 25 to 250 °C. The thermal aging test show that the materials harden during the aging process. Meanwhile, cracking starts in the material matrix. The dielectric strength of the sample drops by 60-70% to only around 10 kV/mm once cracking occurs. |
---|---|
ISSN: | 2156-3950 2156-3985 |
DOI: | 10.1109/TCPMT.2011.2173344 |