Distributed Interference Management in Two-Tier CDMA Femtocell Networks

This paper proposes distributed joint power and admission control algorithms for the management of interference in two-tier femtocell networks, where the newly-deployed femtocell users (FUEs) share the same frequency band with the existing macrocell users (MUEs) using code-division multiple access (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2012-03, Vol.11 (3), p.979-989
Hauptverfasser: Duy Trong Ngo, Long Bao Le, Le-Ngoc, T., Hossain, E., Dong In Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes distributed joint power and admission control algorithms for the management of interference in two-tier femtocell networks, where the newly-deployed femtocell users (FUEs) share the same frequency band with the existing macrocell users (MUEs) using code-division multiple access (CDMA). As the owner of the licensed radio spectrum, the MUEs possess strictly higher access priority over the FUEs; thus, their quality-of-service (QoS) performance, expressed in terms of the prescribed minimum signal-to-interference-plus-noise ratio (SINR), must be maintained at all times. For the lower-tier FUEs, we explicitly consider two different design objectives, namely, throughput-power tradeoff optimization and soft QoS provisioning. With an effective dynamic pricing scheme combined with admission control to indirectly manage the cross-tier interference, the proposed schemes lend themselves to distributed algorithms that mainly require local information to offer maximized net utility of individual users. The approach employed in this work is particularly attractive, especially in view of practical implementation under the limited backhaul network capacity available for femtocells. It is shown that the proposed algorithms robustly support all the prioritized MUEs with guaranteed QoS requirements whenever feasible, while allowing the FUEs to optimally exploit the remaining network capacity. The convergence of the developed solutions is rigorously analyzed, and extensive numerical results are presented to illustrate their potential advantages.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2012.012712.110073