CO2 Chemisorption and Cyclability Analyses of Lithium Aluminate Polymorphs (α- and β-Li5AlO4)
The α- and β-Li5AlO4 polymorphs were synthesized using a solid-state reaction. The polymorphs were then characterized by X-ray diffraction (XRD), X-ray thermodiffraction (XRTD), and N2 adsorption. To determine the CO2 chemisorption capacity, the lithium aluminate polymorphs were analyzed thermogravi...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2012-02, Vol.51 (6), p.2622-2630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The α- and β-Li5AlO4 polymorphs were synthesized using a solid-state reaction. The polymorphs were then characterized by X-ray diffraction (XRD), X-ray thermodiffraction (XRTD), and N2 adsorption. To determine the CO2 chemisorption capacity, the lithium aluminate polymorphs were analyzed thermogravimetrically in the presence of a CO2 flux. In addition, a cyclability study was performed on these ceramic materials. Although the results appear very similar for the two phases, α-Li5AlO4 exhibits a better CO2 chemisorption performance. The cyclic performance tests indicate that both materials exhibit a gradually reduced chemisorption capacity after multicycle processes. However, even after many cycles, the chemisorption capacity is considerably high in comparison to other lithium ceramics tested as CO2 absorbents. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie201616h |