Experiments on Cross-Language Attribute Detection and Phone Recognition With Minimal Target-Specific Training Data
A state-of-the-art automatic speech recognition (ASR) system can often achieve high accuracy for most spoken languages of interest if a large amount of speech material can be collected and used to train a set of language-specific acoustic phone models. However, designing good ASR systems with little...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2012-03, Vol.20 (3), p.875-887 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A state-of-the-art automatic speech recognition (ASR) system can often achieve high accuracy for most spoken languages of interest if a large amount of speech material can be collected and used to train a set of language-specific acoustic phone models. However, designing good ASR systems with little or no language-specific speech data for resource-limited languages is still a challenging research topic. As a consequence, there has been an increasing interest in exploring knowledge sharing among a large number of languages so that a universal set of acoustic phone units can be defined to work for multiple or even for all languages. This work aims at demonstrating that a recently proposed automatic speech attribute transcription framework can play a key role in designing language-universal acoustic models by sharing speech units among all target languages at the acoustic phonetic attribute level. The language-universal acoustic models are evaluated through phone recognition. It will be shown that good cross-language attribute detection and continuous phone recognition performance can be accomplished for "unseen" languages using minimal training data from the target languages to be recognized. Furthermore, a phone-based background model (PBM) approach will be presented to improve attribute detection accuracies. |
---|---|
ISSN: | 1558-7916 1558-7924 |
DOI: | 10.1109/TASL.2011.2167610 |