Dimer and fermionic formulations of a class of colouring problems

We show that the number Z of q-edge-colourings of a simple regular graph of degree q is deducible from functions describing dimers on the same graph, namely the dimer generating function or equivalently the set of connected dimer correlation functions. Using this relationship to the dimer problem, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-02, Vol.45 (7), p.75001-16
1. Verfasser: FJAERESTAD, J. O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the number Z of q-edge-colourings of a simple regular graph of degree q is deducible from functions describing dimers on the same graph, namely the dimer generating function or equivalently the set of connected dimer correlation functions. Using this relationship to the dimer problem, we derive fermionic representations for Z in terms of Grassmann integrals with quartic actions. Expressions are given for planar graphs and nonplanar graphs embeddable (without edge crossings) on a torus. We discuss exact numerical evaluations of the Grassmann integrals using an algorithm by Creutz and present an application to the 4-edge-colouring problem on toroidal square lattices, comparing the results with numerical transfer matrix calculations and a previous Bethe ansatz study.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8113/45/7/075001