Sufficient conditions for existence of a fixed point in stochastic reward net-based iterative models
Stochastic Petri net models of large systems that are solved by generating the underlying Markov chain pose the problem of largeness of the state-space of the Markov chain. Hierarchical and iterative models of systems have been used extensively to solve this problem. A problem with models which use...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 1996-09, Vol.22 (9), p.640-653 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stochastic Petri net models of large systems that are solved by generating the underlying Markov chain pose the problem of largeness of the state-space of the Markov chain. Hierarchical and iterative models of systems have been used extensively to solve this problem. A problem with models which use fixed-point iteration is the theoretical proof of the existence, uniqueness and convergence of the fixed-point equations, which still remains an "art". In this paper, we establish conditions, in terms of the net structure and the characteristics of the iterated variables, under which existence of a solution is guaranteed when fixed-point iteration is used in stochastic Petri nets. We use these conditions to establish the existence of a fixed point for a model of a priority scheduling system, at which tasks may arrive according to a Poisson process or due to spawning or conditional branching of other tasks in the system. |
---|---|
ISSN: | 0098-5589 1939-3520 |
DOI: | 10.1109/32.541435 |