Characterizing Q -linear transformations for semidefinite linear complementarity problems
In this paper we introduce a new class, called F , of linear transformations defined from the space of real n × n symmetric matrices into itself. Within this new class, we show the equivalence between Q - and Q b -transformations. We also provide conditions under which a linear transformation belong...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-02, Vol.75 (3), p.1441-1448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a new class, called
F
, of linear transformations defined from the space of real
n
×
n
symmetric matrices into itself. Within this new class, we show the equivalence between
Q
- and
Q
b
-transformations. We also provide conditions under which a linear transformation belongs to
F
. Moreover, this class, when specialized to square matrices of size
n
, turns out to be the largest class of matrices for which such equivalence holds true in the context of standard linear complementary problems. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2011.07.058 |