Characterizing Q -linear transformations for semidefinite linear complementarity problems

In this paper we introduce a new class, called F , of linear transformations defined from the space of real n × n symmetric matrices into itself. Within this new class, we show the equivalence between Q - and Q b -transformations. We also provide conditions under which a linear transformation belong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-02, Vol.75 (3), p.1441-1448
Hauptverfasser: LOPEZ, Julio, LOPEZ, Rubén, HECTOR, Ramírez C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a new class, called F , of linear transformations defined from the space of real n × n symmetric matrices into itself. Within this new class, we show the equivalence between Q - and Q b -transformations. We also provide conditions under which a linear transformation belongs to F . Moreover, this class, when specialized to square matrices of size n , turns out to be the largest class of matrices for which such equivalence holds true in the context of standard linear complementary problems.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.07.058