Moments of the transmission eigenvalues, proper delay times, and random matrix theory. I

We develop a method to compute the moments of the eigenvalue densities of matrices in the Gaussian, Laguerre, and Jacobi ensembles for all the symmetry classes β ∈ {1, 2, 4} and finite matrix dimension n. The moments of the Jacobi ensembles have a physical interpretation as the moments of the transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2011-10, Vol.52 (10), p.103511-103511-29
Hauptverfasser: Mezzadri, F., Simm, N. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a method to compute the moments of the eigenvalue densities of matrices in the Gaussian, Laguerre, and Jacobi ensembles for all the symmetry classes β ∈ {1, 2, 4} and finite matrix dimension n. The moments of the Jacobi ensembles have a physical interpretation as the moments of the transmission eigenvalues of an electron through a quantum dot with chaotic dynamics. For the Laguerre ensemble we also evaluate the finite n negative moments. Physically, they correspond to the moments of the proper delay times, which are the eigenvalues of the Wigner-Smith matrix. Our formulae are well suited to an asymptotic analysis as n → ∞.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3644378