A 16-kV HBM RF ESD Protection Codesign for a 1-mW CMOS Direct Conversion Receiver Operating in the 2.4-GHz ISM Band
A decreasing-sized π -model electrostatic discharge (ESD) protection structure is presented and applied to protect against ESD stresses at the RF input pad of an ultra-low power CMOS front-end operating in the 2.4-GHz industrial-scientific-medical band. The proposed ESD protection structure is compo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2011-09, Vol.59 (9), p.2318-2330 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A decreasing-sized π -model electrostatic discharge (ESD) protection structure is presented and applied to protect against ESD stresses at the RF input pad of an ultra-low power CMOS front-end operating in the 2.4-GHz industrial-scientific-medical band. The proposed ESD protection structure is composed of a pair of ESD devices located near the RF pad, another pair close to the core circuit, and a high-quality integrated inductor connecting these two pairs. This structure can sustain a human body-model ESD level higher than 16 kV and a machine-model ESD level higher than 1 kV without degrading the RF performance of the front-end. A combined on-wafer transmission line pulse and RF test methodology for RF circuits is also presented confirming previous results. The front-end implements a zero-IF receiver. It has been implemented in a standard 2P6M 0.18-μm CMOS process. It exhibits a voltage gain of 24 dB and a single-sideband noise figure of 8.4 dB, which make it suitable for most of the 2.4-GHz wireless short-range communication transceivers. The power consumption is only 1.06 mW from a 1.2-V voltage supply. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2011.2160078 |